

Course Syllabus

1	Course title	Advanced Bioinorganic Chemistry				
2	Course number	0303725				
	Credit hours	3 (theory)				
3	Contact hours (theory,	6 hrs/week (theory)				
	practical)					
4	Prerequisites/corequisites	-				
5	Program title	M.Sc. Chemistry				
6	Program code	0303				
7	Awarding institution	The University of Jordan				
8	School	Science				
9	Department	Chemistry				
10	Course level	Master Level				
11	Year of study and semester(s)	-				
12	Other department(s) involved in teaching the course	None				
13	Main teaching language	English				
14	Delivery method	⊠Face to face learning □Blended □Fully online				
15	Online platforms(s)	□Moodle ⊠Microsoft Teams □Skype □Zoom				
15		□Others				
16	Issuing/Revision Date	24-1-2024				

17 Course Coordinator:

Name	Contact hours:
Office number:	Phone number: N/A
Email:	

18 Other instructors:

Name:	
Office number:	
Phone number:	
Email:	

19 Course Description:

An introductory as well as advanced aspect and methods in bioinorganic chemistry are all developed during the course. The course will provide students with a general overview of the many very fundamental tasks performed by inorganic elements like "Metal Ions in Proteins" and "Special Cofactors and Metal Clusters" in living organisms. Methods and theories with particular emphasis on enzymatic conversions and electron transfer will be discussed in view of its importance in bioinorganic chemistry. This goes along with the elucidation of model systems and technical applications of both, concepts learned from nature as well as biological systems.

20 Course aims and outcomes:

A- Aims:

At the successful completion of this course, you (the student) should be able to:

CLO1 Understand how metal ions interact with biological environments and how these interactions influence the properties of metal centres.

CLO2 Applies principles of coordination chemistry as well as principles of inorganic chemistry and organometallics to explain how nature tailors the properties of metal centres for specific applications.

CLO3 Analyse critical questions (asked by fellow students or the instructor) and engage in scientific discussion on bioinorganic chemistry-related topics.

CLO4 Demonstrate in written homework the ability to comprehend current problems in bioinorganic chemistry and answer specific scientific questions using the knowledge provided during the course.

CLO5 Understand current publications and reviews in bioinorganic chemistry in high-impact journals at the level that is required to present a self-selected topic to an audience in a conference-style seminar.

B- Students Learning Outcomes (SLOs):

SO-1. Problem Solving: Graduates will be able to apply mathematical and scientific knowledge to identify, formulate, and solve technical or scientific problems relevant to the discipline of chemistry.

SO-2. Design: Graduates will be able to use their understanding of chemistry concepts and principles to formulate and design systems, processes, procedures, or programs to meet desired goals and outcomes.

SO-3. Experimental Skills: Graduates will be able to design, conduct, and analyze experiments or test hypotheses, utilizing appropriate chemical techniques and scientific judgment to draw meaningful conclusions.

SO-4. Communication: Graduates will be able to communicate scientific information effectively and accurately to a range of audiences, including both technical and non-technical audiences. SO-5. Ethics and Global Context: Graduates will understand and apply ethical and professional responsibilities in the context of the impact of technical and scientific solutions on global, economic, environmental, and societal issues.

SO-6. Teamwork: Graduates will be able to work effectively as part of a team, establishing goals, planning tasks, meeting deadlines, and analyzing risk and uncertainty in the context of chemistry-related projects and initiatives. SO-7. Handling Chemicals: An ability to apply the proper procedures for safe handling of chemicals.

		SO-1	SO-2	SO-3	SO-4	SO-5	SO6
Course Learning	CLO-1	\checkmark	\checkmark				
Outcomes (CLO)	CLO-2	\checkmark	\checkmark				

CLO-3	\checkmark			
CLO-4	\checkmark		\checkmark	
CLO-5		\checkmark	\checkmark	\checkmark

21. Topic Outline and Schedule:

Wee k	Lectur e	Торіс	Student Learning Outcome	Learning Methods (Face to Face/Blended / Fully Online)	Platform	Evaluation Methods	Resource s
1	1,2	Introduction to bioinorganic chemistry, general terms, how and why does nature select inorganic elements? Inorganic Elements and evolution	SO1,SO2	Face to Face	Classroo m	MID+Final	Required book in section 25
2	3,4	Basic biological Coordination Chemistry. Kinetic and spectroscopic characteristics of bioinorganic systems.	SO1,SO2	Face to Face	Classroo m	MID+Final	Required book in section 25
3	5,6	Stroll through the periodic system. Systematic overview over tasks and examples of inorganic elements in biology	SO1,SO2	Face to Face	Classroo m	MID+Final	Required book in section 25
4	7,8	Ion transport: membranes, energy, channels, pumps	SO1,SO2	Face to Face	Classroo m	MID+Final	Required book in section 25
5	9,10	Biomineralization : the hard part of bioinorganic chemistry	SO1,SO2	Face to Face	Classroo m	MID+Final	Required book in section 25
6	11,12	Nanoparticles, Inorganic structural elements in proteins, RNA & DNA, Lewis acid catalysis	S01,S02	Face to Face	Classroo m	MID+Final	Required book in section 25
7	13,14	Bioinorganic coordination chemistry II – transition metals: <i>apply</i> coordination chemistry of redox active metal ions to explain properties of these metal centers	SO1,SO2	Face to Face	Classroo m	MID+Final	Required book in section 25

	8	15,16	Electron	SO1,SO2	Face to Face	Classroo	HW+Final	Required
			transport in	, SO4,		m		book in
			biology – iron	SO6				section
			sulfur clusters,					25
			enzymes for					
			respiration,					
			photosynthesis					
			and related					
			pathways					
ſ	9	17,18	Oxygen transport	SO1,SO2	Face to Face	Classroo	HW+Final	Required
			– metal-oxygen	, SO4,		m		book in
			coordination in	SO6				section
			proteins					25
ŀ	10	10.20	Owngon	501 502	Esso to Esso	Classroo	HW Final	Dequired
	10	19,20	Oxygen activation and	501,502	race to race	Classioo	n vv +r mai	head in
				, 504,		111		
			processing by	500				section 25
			cytochromes					25
Ī	11	21,22	Small molecule	SO1,SO2	Face to Face	Classroo	HW+Final	Required
			activation and	, SO4,		m		book in
			conversion by	SO6				section
			metalloenzymes -					25
			photosynthetic					
			water splitting					
I	12	23,24	Radicals and	SO1,SO2	Face to Face	Classroo	HW+Final	Required
			Bioorganometalli	, SO4,		m		book in
			c Chemistry –	SO6				section
			from RNA to					25
			DNA and from					
			Vitamin B12 to					
			methanogens and					
			methanotrophs					
	13	25,26	Biological	SO1,SO2	Face to Face	Classroo	Seminar+Fina	Required
			conversion and	, SO4,		m	1	book in
			formation of	SO6				section
			hydrogen and					25
			nitrogen–					
			hydrogenases and					
l			nitrogenases					
	14	27,28	Metal	SO1,SO2	Face to Face	Classroo	Seminar+Fina	Required
			pharmacology:	, SO4,		m	1	book in
			uptake storage	SO6				section
			toxicity					25
ł	15	29.30	Metals in	SO1.SO2	Face to Face	Classroo	Seminar+Fina	Required
		,	medicine: anti	. SO4.	o 1 ucc	m]	book in
			cancer agents	,50 S06				section
			diabetes.	200				25
			arthritis.					
			radionuclides and					
			related					
			applications					

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
Midterm	30	As per Sec. 21 above	1,2	Week 10	In the department
Seminar+Homework	20	As per Sec. 21 above	1,2,4,6	Last weeks	In the department
Final Exam	50	As per Sec. 21 above	1,2	End of the semester	In the department

23 Course Requirements

24 Course Policies:

A- Attendance policies: All students are expected to follow the of attendance policies of the University of Jordan, absences exceeding 15% of total number of class meeting (6-hour classes) will result in F grade or course drop.

B- Absences from exams and handing in assignments on time: University rules and regulations regarding make-up exams.

C- Health and safety procedures: N/A

D- Honesty policy regarding cheating, plagiarism, misbehaviour: University rules and regulations.

E- Grading policy: University rules and regulations

F- Available university services that support achievement in the course: N/A

25 References:

A- Required book (s), assigned reading and audio-visuals:

1- Ivano Bertini, Harry B. Gray, Edward I. Stiefel, Joan Selverstone Valentine, Biological Inorganic Chemistry – Structure & Reactivity "

B- Recommended books, materials, and media:

1. Inorganic Chemistry, by Catherine E. Housecroft and Alan G. Sharpe, 5th edition,

Pearson, 2018. Page 1098 / chapter 29 / The trace metals of life

26 Additional information:

Name of course coordinator: *Prof. Dr.* Head of Curriculum Committee/Department Head of Department Head of Curriculum Committee/Faculty Dean Signature Signature Signature Signature